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6.1 Size Effect in Equivalent Elastic C rack Approximations
6.1.1 Size Effect in the Large Size Range

We have seen in the prcced.mg chapter that at peak load, all the equivalent crack models satisfy (5.3.6).
Moreover, for large specimen sizes, the critical equivalent crack extension tends to a limiting constant
value cy: Aaec'—*(_'f for D — co; see (5.3.4).

To find the size effect implied by (5.3.6) in the large size range, we first set in it croe = g + ce/D
and we solve for op,, as

K{c
VD k(a0 + c;/ D)

We next approximate k*(ag + ¢ 7/ D) by its two term Taylor series expansion at a:

Ko +cp/D) zk%-é—?.kgké% (6.1.2)

(6.1.1)

TNy =




where ko = k(ap) and kj = k’(co) stand for the values of k() and its first derivative for the initial
crack length. Inserting this approximation into (6.1.1), we get

KIc ch

ONy = = (6.1.3)
* T VBD +2kekie;  /2Rokies \/T+ D] (2kycs ko)
so that if we set:

Kr. 2k
Bfl = ——=—, d Dy==2¢ 6.1.4
b TR T P TR o

we obviously get the classical form (1.4.10) of BaZant’s size effect law:
B (6.1.5)
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With the foregoing derivation we have achieved another independent justification for BaZant's size
effect law, and have shown that all the equivalent crack models asymptotically converge to it for large
sizes. At the same time we obtained an interpretation of its constants B f] and Dy, in terms of the more
fundamental fracture parameters K. and cy. The relations (6.1.4) are at the base of the experimental
determination of the fracture properties of concrete based on size effect, the main topic in the next sections.
Here we use them to explore the structure of the size effect parameters Dy and B.

The second expression in (6.1.4) reveals the basic characteristics of the transitional size Dy. First,
it is proportional to the effective length of the fracture process zone ¢, which in tumn is approximately
proportional to the inhomogeneity size of the material (dictated by microstructural features), and also
to the characteristic size fo, = K7,/ f{z, as discussed in §5.3.1. Second, it is proportional to the
ratio 2k’( )/ k{c), which is independent of material properties and introduces the effect of strucmure
geometry (shape). It is interesting to note that this ratio is the same appearing in the definition of the
intrinsic size L) previously introduced in §5.3.3 for the fracture process zone of concrete, and appears in
some other works dealing with nonlinear fracture models, particularly those of Horii and Planas and Elices
(Horii 1989; Horii, Hasegawa and Nishino 1989; Horii, Shi, and Gong 1989; Planas and Elices 1989,
1990, 1991, 1992; Llorca, Elices and Planas 1989; Elices and Planas 1991, 1992). Though certainly not
an exact characterization of structure geometry, this ratio apparently captures its main effect on fracture.

The first of (6.1.4), in turn, reveals the basic structure of B: it can be rewritten in terms of £, as

B:,;_, ben (6.1.6)
V2koky | ¢f

which shows that B also consists of a product of a geometrical function times a material parameter. This
material parameter was called 3 = cy/fep in §5.3.1— Egs. (5.3.3) and (5.3.5)— and is related (o the
softening behavior of the material; for concrete its value can be estimated in the range 2-5.

6.1.2 Size Effect in the Jenq-Shah Model

To analyze the size effect delivered by the Jeng-Shah model (BaZant199??—discussion of Tang et al.
1992)! we consider geometrically similar structures {with similar notches) and rewrite the governing
equations (5.5.1) and (5.5.10) in parametric form. To simplify the expressions, we drop the subscript
from Aa,, and write .. = g + Ac; then we solve for oy, from (5.5.1):

_ K[c
B v Dk*(ag + Aa)

which, we remark, is identical to (6.1.1), except that A is not given, but must be obtained from (5.5.10),
which we leave as it was (except for the subscript):

(6.1.7)

ONu

Ac LX(Aa, ap) = % (6.1.8)

!Zdenek: please complete this reference.
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where cy is given in terms of the material properties E’, K. and wr, by (5.5.11). The two foregoing
equations are the parametric equations of the size effect curve for the Jeng-Shah model. Elimination of
the parameter Aq delivers the size effect curve o vy —D.

This elimination is not feasible analytically in general. However, the solution for relatively large sizes
can be found by expanding the equations in series of powers of Aa and c;/D. To do so, we remark that
L(cy/ D, o) is regular in ¢y / D and accepts a power series expansion; therefore, so does L*(cs/ D, )
and one can write, recalling that L{0, ap) = 1:

[e=]
LHAcya0) =1+ Y an (Ad)" (6.1.9)
n=1
where for brevity we do not make explicit that the coefficients a,, depend on ay.
Now, one may seek a power expansion solution of (6.1.8) by writing

Ac = %4—2&, (%)Hl . (6.1.10)

where the b,,'s are determined substituting (6.1.9) and (6.1.10) into (6.1.8) and identifying the coefficients
of ¢/ D onboth sides of the equal sign. One easily finds the first few terms of the expansion: by = —2ay,
b = Za% —3ay, ... .

Now we go back to (6.1.7) and expand kz(a) in Taylor series at @ = g

Koo+ Aa) =K [1+ciAa+c (Aa) +...] |, where cn= —5— (6.1.11)

a=ay

Finally, we substitute this and A given by (6.1.10) into (6.1.7), and obtain the following expression for
the size effect corresponding to the Jeng-Shah model:

B 1+ 2 4 g (Y o 6.1.12
oxu = Bf; +DO+;D.— Z(D) + ... (6.1.12)
where B and Dy are the same as defined in (6.1.4), and d,, are coefficients that may be obtained in terms
of the coefficients b, and c,. The first two coefficients are, for example: d; = (¢1b) + 3)/¢1, and
dz = (c1b3 + 2c2b1 + c3)/ 1.

Equation (6.1.12) represents a general asymptotic description of the size effect of the Jenq-Shah model.
This infinite asymptotic series is similar to that derived in BaZant (1986) by another argument (see Chapter
10). For not too small size D, the terms with ¢/ D, (cs/ D)?, etc. are negligible compared to 1. Dropping
them, we see that (6.1.12) reduces to the size effect law in (6.1.5).

So we may conclude that the equivalent LEFM model based on the critical crack-tip opening displace-
ment, including Jenq and Shah’s two-parameter model for concrete, gives a size effect that is asymptotically
equivalent to the size effect law, Eq. (1.4.10) or (6.1.5). This conclusion implies that Jenq and Shah'’s
model must give overall similar results as the R—curve model base on the size effect law. Furthermore,
it follows that the material parameters of Jenq and Shah's model can be determined from size effect
measurements.

6.2 Size Effect Law in Relation to Fracture Characteristics
6.2.1 Defining Objective Fracture Properties

Experience shows that different experimental techniques or different analysis (i.e. using different models
for the interpretation of the tests results) may lead to different values of nominally identical fracture
parameters: fracture toughness, fracture energy, size of the fracture process zone, etc. There is, however,
a way to uniquely define such parameters: Use the values of the parameters corresponding to the extrap-
olation of specimen size (o infinity. The reason: As discussed in the preceding chapter, in an infinitely




large specimen, the fracture process zone occupies an infinitely small fraction of the specimen volume.
Therefore, in the limit, all of the specimen volume is in an elastic state; and since from linear elastic
fracture mechanics it is known that the near-tip asymptotic field of displacements and stresses is the same
regardless of the shape and size of the specimen or structure, it turns out that the fracture process zone
in an infinitely large specimen is exposed along its boundary to the same stress or displacement field,
regardless of the specimen shape, and so it must behave in the same manner. In particular, it must have
(statistically) the same distribution of strains and microcracks, the same length and width, and the same
energy dissipation. Consequently, an unambiguous definition (proposed by BaZant1987a) is as follows:

The fracture energy Gy and the effective fracture process zone length cy are, respectively, the
energy release rate required for crack growth and the distance from the notch tip to the tip of
the equivalent LEFM crack in an infinitely large specimen of any shape (provided it has positive
geometry).

Without the foregoing asymptotic definition, the problem of defining and determining the material
fracture characteristics becomes ambiguous and more difficult. The fracture process zone length and
width depends on the specimen shape because it is influenced by the proximity of the specimen boundary.
Itappears impossible to eliminate from measurements these parasitic influences with high accuracy without
making an extrapolation to infinite size.

Because the failure of specimen (peak load) is dictated by the material characteristics, it must be
possible to determine these characteristics from size effect measurements. In fact, by virtue of the
foregoing asymptotic definition, the determination of fracture characteristics is reduced to the calibration
of the size effect law. If we knew this law exactly, we would get exact results. But the exact size effect
law, applicable up to arbitrarily large sizes, is not known. Therefore, the size effect method, like others,
yields in practice only approximate results. Nevertheless, the validity of BaZant’s size effect law (6.1.5)
is rather broad, covering a size range of up to about 1:20, which suffices for most practical purposes.
We shall see in the next chapter that other extrapolations lead to different values for parameters named
identically; however, if the values are used consistently (i.e., within the modles on which their obtention
is based), then similar predictions are obtained for typical aspects of the structural response (peak load,
load~displacement curves or the like). We next determine the relation of the parameters in BaZant's size
effect law with the more fundamental fracture parameters.

.2.2 Determination of Fracture Parameters from Size Effect

In the previous section we showed that the size effect dictated by effective crack models converge to
BaZant’s size effect law for infinite size, and we determined the relation of the size effect parameters Dy
and B f{ with the asymptotic fracture parameters, Egs. (6.1.4).

Thus, if we assume that Dy and B f} are known from experiment (see the next section for the detailed
experimental procedures), we can solve for K and ¢ from (6.1.4) and get

K. = Bfi\/Dokg (6.2.1)
=—D 6.2.2
o= g0 (6.2.2)
For infinite size, LEFM must hold, and according to Irwin’s relationship, G5 = K7,/E’, so from
(6.2.1) we get o
(Bf:)* Dok}
Gy= —‘E,— (6.2.3)

6.2.3 Intrinsic Representation of the Size Effect Law

In the foregoing, the size of the specimen, [, is just a ‘user-selected’ (i.e. arbitrary) linear dimension.
It turns out, then, that different users can obtain different size effect parameters. Thus, these parameters
are not intrinsic and cannot be directly compared if different D are used or, more important, different
geometries are involved.

The concept of intrinsic size introduced in §5.3.3, allows rewriting BaZant’s size effect law (6.1.5) in
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an intrinsic form in which the geometrical and matenal properties are decoupled (BaZant and Kazemi
1990a). Setting in (6.1.3) that D/(2ky/ko) = D —in accordance with the definition (5.3.11) of the
intrinsic size D— we get

KIc

ONu =
\/ 2koky(cs + D)

so that if we introduce the intrinsic nominal strength &, defined as

T = Onuy/ 2kok (6.2.5)

we get a modified size effect law in which the parameters depend only on material properties:

(6.2.4)

E ’
Tvu = —-——fi_—_; (6.2.6)
v/ 1+ D/Dg
and
O Kfc -
Bf, = o y Do=cy (6.2.7)

Thus, if the size effect is expressed in terms of the intrinsic strength & y,, and of the intrinsic size D,
the structure of the equation is retained, but the dependence on the geometry (shape) of the specimen is
eliminated. This allows using data from different specimens shapes and sizes in a single plot, a fact that
can be useful to compare apparently dissimilar results.

Exercises
6.1 Determine K., Gy and ¢y for test series B1 and Cl in Section 1.5. Sort the materials by (1) strength

—and (2) toughness. Note: Estimate the YOungfmodqus from ACI formula £ = 4735+/ f&. Take ko = 0.687

and k§ = 2.10 (the method to obtain them will be explained in §6.3.4).

6.2 According to (6.2.6), for a given intrinsic size D, the behavior is fully brittle (i.e., LEFM applies exactly)
when ¢y = 0, and the behavior is ful.[y ductile when ¢y — oo. We may define a material brittleness v as the
inverse of ¢y: v = 1/cy (with unit m™"' or mm™"). Compute the material brittleness for series B1 and C1.

6.3 Size Effect Method: Detailed Experimental Procedures
6.3.1 Outline of the Method

In the size effect method, a number of geometrically similar notched specimens of various sizes are tested
for peak load. The nominal strength is then computed and plotted versus the size, and the values of the
parameters B f{ and Dy are obtained by best fitting of the size effect law to the experimental results.
Finally, K., Gy and ¢y are obtained from Egs. (6.2.1)+6.2.3).

It should be noted that the size effect method is applicable only for specimens of positive geometry,
i.e., those for which k'(co) is positive. When k’(cg) is approximately zero or negative, the method is
inapplicable. This happens, for example, during the initial crack growth in a center—cracked specimen
loaded on the crack. One reason for the failure of the size effect method is that in such specimens the
crack length at maximum load can be much longer than the notch, due to stable crack growth, and thus
the crack lengths at maximum loads of specimens of different sizes are not similar. Another reason is that
Eq. (6.2.2) gives in this case either infinite or negative ¢y which is impossible.

Egs. (6.2.1)(6.2.3) are used for regressions based on the size effect law in its ordinary form (6.1.5). One
can, however, also use the size effect law in the intrinsic form (6.2.6), which directly involves material
parameters Gy and cy. In that case, these parameters can be obtained directly by optimal fitting of
Eq. (6.2.6) to the measured values of 7, for various values of 1J. When such a method is used, the




specimen shapes do not necessarily have to be geometrically similar, and test results for different specimen
geometries can be mixed in one and the same regression. However, the parameter that takes into account
the specimen shape, namely the ratio k’(ap)/k{caw), is only approximately known and thus it introduces
an additional error. To avoid this error, it is preferable to use specimens that are geometrically similar.

In either case, the fitting can be accomplished easily by nonlinear regression using some nonlinear
optimization subroutine such as Levenberg—Marquardt algorithm. One advantage of this procedure is that
this subroutine also gives the coefficients of variation of G ; and cy. However, other simpler methods
involving linear regression can be used too. In the next secion we examine the simplest regression
procedures.

6.3.2 Regression Relations

In a latter section, we shall justify that the best approach to identifying Dy and B f from experiments is
norlinear optimization, provided that a computer subroutine such as Levenberg-Marquardt algorithm is
available. From measurements one gets a series of nominal strength values oy, corresponding to sizes
Di(k =1,2,...) and values of Dy and B f{ are sought such that the quadratic deviations in a log-log
plot are minimum (Fig. 6.3.1a). This is equivalent to a fit in classical coordinates (x,y) in which the
curve to fit is written as

M

y=In————— (6.3.1)
VN F explTy) o)
where 2
z=InD, y=lnoyy, Bfiv/Do=M, Do=N (632
One readily gets K., G 4nd ¢y in terms of the best fit parameters M and NV from Egs. (6.2.1)+6.2.3):
Kie=koM, Gf= g";M"" NIES -Z%N (6.3.3)

Note that M and /N have been chosen so that G ¢ depends on .M only and ¢y only on V. In this way, the
errors for the fit parameters, computed automatically by the optimization routine, can be directly used to
estimate the errors for Gy and c;. If other parameters are used, their correlation coefficient must be also
calculated, which is not a standard feature in many commercial optimization routines.

If a nonlinear optimization program is unavailable, one can exploit the fact that the size effect in
Eq. (1.4.10) can be algebraically rearranged to a linear regression plot (BaZant 1984; Fig. 6.3.1b):

Y=AX +C  Linear Regression I (6.3.4)
for which
1 1 C
- - B i Do 6.3.5
x=0,¥=(5-). 8= Do=3 =)
As before, K¢, Gy and ¢y follow from Egs. (6.2.1)—(6._2.3):
1 k2 1 ke C
Byt s O === 6.3.6
Kfc kﬁ m 5 E A cr zka A ( }

Another algebraic rearrangement of Eq. (1.4.10) yields an alternative linear regression plot (Planas and
Elices 1989; Fig. 6.3.1c):

Y'=A'X'+C" Linear Regression II (6.3.7)
in which
1 1 1 A’
X'==,Y= , Bfl = , Dy=—= 6.3.3
b V=g M=7p b=o (639

S’



Size Effect Method: Detavled Experimental Procedures

02
11 M LI T 1 T v T T il
5 (a) 1
w N
sl el
5] =
= s 01
&3 9 1 &
s

2 1 . 0 L i | 1 1 i, I

0 30 100 150 200 230 300 350
D (mm)

[y
e

500 (d)

[: ¥

—

']
o ©
o o

D (mm)

/(Do ) (MPa”m™)
g 28

¥
T
0
1
e
a

0 g Yo al L L 1 1
0 3 10 15 20 25 30
1/D(m™)

uy

3 4
o, (MPa)

FIGURE 6.3.1

Regression plots: (a) bilogarithmic; (b) linear regression I; (c) linear regression IT; (d) Inverse
bilogarithmic plot. Experimental data correspond to tests by BaZant and Pfeiffer (1987) reported as
Series B1 in Chapter 1 (see tables 1.1 and 1.2).
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Now the expressions for K¢, Gy and ¢y are:

1 K21 kg A
- e e T2 639
,/Cf f El C! cf Zké Cq ( )

Note that in the first type of linear regression, the fracture energy is inversely proportional to the
regression slope, and in the second type of regression, it is inversely proportional to the intercept. The
linear regression plot of type I gives a better visual display of the test data for smaller specimen sizes
while the regression plot of the type II gives a better display of the extrapolation to infinite size. LEFM
corresponds to ¢y — 0, that is to C = 0 in the first type of regression (line through the origin), and to
A’ = 0 in the second type of regression (a horizontal line). The strength theory corresponds to Dy — oo,
that is to A/C = 0 in the first type of regression (a regression line with a negligible slope), and to
C’/A’ = 0 in the second type of regression (a regression line through the origin).

The regressions in Egs. (6.3.1), (6.3.4) and (6.3.7) are not completely equivalent and do not yield
exactly the same results. The reason is that these regressions imply different weighing of the data points.
An improved regression method taking weights into account will be introduced in §6.3.6. Before we
examine the RILEM recommendation —which uses the linear regression of type I with equal weights—,
we apply the foregoing regressions to an example.

K!c=k0

Example 6.3.1 The following table summarizes the results of the tests on notched three-point bend
concrete beams by BaZant and Pfeiffer (1987); they correspond to Series Bl in Tables 1.1 and 1.2. From
the raw data in the first two rows, the coordinates (z,y), (X,Y) and (X', ¥") have been computed

according, respectively, to Egs. (6.3.2), (6.3.5) and (6.3.8) and are included in the following rows of the
table.

specimen No.
Var. Units #1 #2 #3 #4 #5 #6 #7 #8 #9 E10 #11 #12
D mm 38 38 38 76 76 76 152 152 152 305 305 305
TNu MPa 4.65 4.69 4.79 3.89 4.06 4.08 2.84 2.99 3.15 2.50 2.50 2.55
z In(mm) 3.64 3.64 3.64 4.33 4.33 433 5.03 5.03 5.03 572 5.72 3.72
y In(MPa) 1.54 1.55 1.57 1.36 1.40 141 105 1.09 1.15 515 .915 .935

108X m 38 38 38 76 76 76 152 152 152 305 305 305
1Y  MPa~?  46.2 45.5 43.6 66.1 60.8 39.9 124 112 101 160 160 154
X' m~! 26.2 26.2 26.2 13.1 133 13.0 6.36 6.56 6.56 3.33 3.23 3.28

Y’ (MPay/m)~2 1.21 1.19 1.14 .867 .798 .786 .811 .735 .662 .526 .526 .506

The foregoing values were fed to a commercial data analysis program, which drew the graphics in
Fig. 6.3.1 and computed the best fit values for (M, N), (A, C) and (A’, C") according, respectively,
to the nonlinear regression (6.3.1), the linear regression I (6.3.4) and the linear regressicn II (6.3.7).
With units MPa and m, the results were: M = 1.46, N = 0.0596, A = 0.427,C = 0.0334, A" =
0.0267, C’ = 0.486. From these, values proportional to K., G and cy were computed from (6.3.3),
(6.3.6) and (6.3.9); the following table summarizes the results; the values in parentheses are the coefficient
of variation in percent, as delivered by the program.

Regression
Parameter Units Nonlinear Lmear [ Linear II
(1/ko) K1 MPam'/?  146(£34%) 1.53(£3.4%) 143 (£3.4%)
(E'/k2) Gy (MPa*m  213(£68%) 234(=6.8%) 2.06 (+6.8%)
(2K5/ ko) cf mm 60 (£ 16%)  78(x22%) 55 (* 14%)

We see that the values for K. have little statistical error (less than 4%), but the values delivered by the
three methods differ slightly, the maximum difference relative to the nonlinear fit being about 5%. This
difference is twice as large for G s (because of the squaring) and becomes as large as 30% for cy. Note,
however, that the statistical error is also very large for ¢ and that the relative difference between any two
results is always lower than twice the coefficient of variation. I
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Suggested specimen geometry of the RILEM draft recommendation.

6.3.3 RILEM Recommendation Using the Size Effect Method: Experimental Procedure

One of the RILEM Recommendations on concrete fracture recommends determining the material fracture
characteristics from the size effect law (RILEM 1990). The idea of this method, proposed by BaZant
(1989) and BaZant and Pfeiffer (1987), is that one first determines the parameters of the size effect law
the linear regression I and then the material fracture parameters ensue from Egs. (6.3.6).

The method works equally well for a number of geometries (provided they are positive geometries),
but three-point-bend beams are recommended for the purpose of standardization (Fig. 6.3.2). The loads
and reactions are applied through one hinge and two rollers with a minimum possible rolling friction,
and through stiff bearing plates (of such a thickness that they could be considered as rigid). The bearing
plates are either glued with epoxy or are set in wet cement. The distance from the end of the beam to the
end support must be sufficient to prevent spalling and cracking at beam ends. The span—to—depth ratio of
the specimen, S/ D, should be at least 2.5 (this has been set only for the purpose of standardization; the
theory does not prevent smaller values). The ratio of the notch depth to the beam depth, ag/ D, should
be between 0.15 and 0.5. The notch width at the tip should be as small as possible and must not exceed
0.5 d, where d, = maximum aggregate size. The width b of the beam and the depth d should not be less
than 3d,.

An important point is the choice of specimen sizes Di(i = 1, 2, ... n) for which the tests should be
carried out. If only two sizes were used, the regression line could be passed through the average of the
o ny-values for each size exactly, and thus one would have no idea how well the observed dependence on
D agrees with the size effect law. Therefore, at least three different sizes must be used.

To decide how to choose the specimen sizes D) optimally, it is helpful to consider inverting the
coordinates (Fig. 6.3.1d). One may regard oy, as the given coordinates, and the corresponding Dy as
the size values for which each oy, would be obtained?. These Dy values will m general differ from the
D—value corresponding to the size effect :aw. Therefore, ADg = Dy — D are the errors (Fig. 6.3.1d).
Now, for the same reasons as before, it seems reasonable to consider that the inverse of the size effect law
has roughly constant relative errors A Dy/ Dy, rather than constant absolute, errors ADj. Consequently,
since ADy/ Dy = A(ln Dy), a logarithmic size scale should be used. This means that the sizes Dy of
the specimens to be tested should be chosen uniformly spaced in the logarithmic scale. In other words,

Dy, should form a geometric progression, i.e. D1/Dy = Dy/D3 = - --. Note that if, on the other hand,
the chosen sizes are crowded in one position of the In D scale, one in fact imposes a bias for that portion
of the size range. R

In summary, the Recommendation indicztes that specimens of at least three different sizes, characterized
by beam depths D = Dy, ... Dy must be tested. The smallest depth D; must not exceed 5d, and the
largest depth D, must not be smaller than 10d,. The ratio D,/D; must be at least 4. The ratios of
the adjacent sizes, D; 1/ Dk, should be approximately constant. Optimally, the size range should be as
broad as feasible. Thus, for instance, the choice D/d, = 4, 8, 16 is usually acceptable, but the choices
D/d, =3,6,12,24 or 3,9, 27 are preferable.

For statistical reasons, at least three identical specimens should be tested for each specimen size. All
the specimens of all the sizes must be cast from the same baich of concrete, and the quality of concrete

2Zdenek: I still feel uncomfortable with this reasoning. However, [ can't find a solid argument either pro or con. [ think
that stating that geometric progression has been chosen in the recommendation is enough, and this paragraph could be skipped
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must be as uniform as possible. The curing procedure and the environments to wkich the specimens are
exposed, including their histories, must be the same for all the specimens. To avoid differences in the
hydration heat effects and minimize other types of size effect (see Sec. 1.3), all the specimens should be
geometrically similar in two dimensions, that is, the third dimension (thickness b) should be the same for
all the specimens.

It is sufficient to use an ordinary uniaxial testing machine without high stiffness. However, closed—
loop control and high stiffness of the loading frame lead to more consistent results, and they also permit
determining the post—peak response, which is useful for calibration of more sophisticated fracture models.
The same machine ought to be used for testing all of the specimens. The specimens should be loaded at
constant (or almost constant) displacement rates (this could be the load-point displacement, but better the
crack mouth opening displacement). Although the size effect law is applicable over a very broad range of
loading rates (its applicability has been demonstrated for tests at which the maximum loads are reached
in times ranging from 1 s to 10° s; see Chapter 12), for the purpose of standardization it is desirable that
the maximum load be reached in about 5 minutes.

“Aside from the aforementioned maximum load values P, ... P, for specimens of sizes [y, ... Dp,
the following data should also be obtained and reported: Young's modulus E., standard compression
strength f7; all the dimensions of the beam and bearing plates; the maximum aggregate size; the ratios
(by weight) of water:cement:sand and gravel in the mix; the type of cement, its fineness, and admixtures;
the mineralogical type of aggregate; the curing and storing conditions; temperature and relative humidity
during the test; and the mean mass density of the concrete.

63.4 RILEM Recommendation Using the Size Effect Method: Calculation Procedure

The raw data for the calculations are the specimen dimensions, particularly the beam depths Dy and
the measured maximum loads P",= (k = 1,2,...,n;n = number of specimens). The first step is
to compute gy, for all the specimens. For heavy specxmens the own we1ght of the specimens may
have to be taken into account. To this end, the measured maximum loads P .. PO should best be
corrected in such a manner that the corrected loads Py, ..., Py, without own #elg,h{ would produce
the same stress intensity factor according to LEFM. This is approxunately equivalent to requiring that
the bending moments at the notch section produced by loads PO plus the own weight be equal to the
bending moment due to P,, alone. For the most usual testing conﬁ guration in which the notch is located
at the bottom of the beamn, if the specimen length Ly is almost the same as the span S,-and no ancillary
equipment (loading plates or rods, e.g.) is resting on the specimen, this is approximately achieved by
taking Py = P{ + (mkg/2) (i = 1,...,n), in which g is the acceleration of gravity and myg = the
weights of all the individual specimens. If Ly differs from S substantially, then

P = P T mig(2Sk — Lk)/25% (6.3.10)

From these corrected ultimate loads, the nominal strength of each specimen is computed from the first of
(1.4.1). In the original recommendation, cyr = 1 is used, and the shape factors for the stress intensity are
modified accordingly. Here we use a different value of cy so that the expressions in chapters 2-5 can be
directly used. Specifically, the nominal strength is computed for each specimen as

3PSk 7
Nupe = k=1,2,..., 6.3.11
TN = b D2 i (63.11)

Finally, one calculates the coordinates of the data points in the linear regression of type I, Eq. (6.3.4)
X, = Dy and Yy = (1/0 nu, )* where Dy are the sizes corresponding to P,,. An example of such
correlation is shown in Fig. 6.3.1b.

The slope A and intercept C of the regression line may now be calculated from the well known
linear regression equations (e.g. Pugh and Winslow 1966, §11.6; Press et al. 1992, §15.2). For future
comvenience, we use here a presentation of the equations in a form slightly different from that used in the
RILEM (1990) Recommendation. In this presentation it is useful to define the following sums (which are
automatically performed by most hand calculators):

\
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n

T=) 1=n, S,=) X, ;=) Y%
k=1

k=1 k=1
n L n

Zaa= 3 (K Bopy=) WXi, =) (%) (6.3.12)

Then the regression coefficients A and C are obtained as

IL;, — I.Z b3 IR 500 3
A=z =y B ey &
A , C A (6.3.13)
where

A = BB = {T5)* (6.3.14)

Note that in the foregoing Y}, are the measured data (not the averages of the data for each size!). It should
be checked whether the plot of all the data points is approximately linear (if not, the test procedure was
probably jarred by some errors or inadequate control of test conditions).

After computing A and C one calculates the geometrical factors ko = k{a) and kj = k’'{ax) using
the shape factor function k() given in the recommendation. Three shape functions are given, for span-
to-depth ratios S/ D = 2.5, 4 and 8. Although interpolation is deemed acceptable, the recommendation
suggests to stick to these values to avoid introducing additional errors. Today, these expressions can be
advantageously replaced by the general formulas of Pastor et al. (1995) given in examples 3.1.1 and 3.1.4
—Egs. (3.1.1)~(3.1.3) and (3.1.8). We summarize them here for the reader’s convenience: The shape
factor for a span to depth ratio S/ D takes the form

ks/p(a) = Vo i+ ;’z/)a(i)a)yz ,  ps/pla) = pwo(a) + %[pa(a) —Peola)] (6.3.15)

where the polynomials ps(a) and pog () are given by Egs. (3.1.2) and (3.1.3). With the values of kg
and kg computed from these formulae, the fracture parameters are calculated from (6.3.6). Note that
numerical differentiation is the faster method to obtain kj; analytic differentiation is feasible, but the
resulting formula is too long to e practical.

It is also desirable to calculate statistics of the results. If the standard deviation of the data is not known,
an estimate of it is obtained from the quadratic deviation from the straight line, x?:

) n
= (=Y =) (Y- AXi - C)* =Ty — AT, — CT, (6.3.16)
k=1 k=1

Then, the coefficients of variation of A and C —w 4 and we— and the relative width of the scatter band
m are determined as

1 =

1 Xlzr:r: 2 (n - I)XZE(Ez)z
A (n-2)A"

CT(n—2)Aa" T (n-2)A(Ty)?

wh = wh = (6.3.17)

According to the recommendation, the value of w 4 should not exceed about 10% and the values of w¢
and m about 20%. These conditions prevent situations in which the size range is insufficient compared
with the scatter of test results. Such a situation is illustrated in Fig. 6.3.3a in which a unique slope can
still be obtained but is highly uncertain. Fig. 6.3.3b illustrates the case where large scatter of test results
necessitates the use of a very broad size range, while Fig. 6.3.3c¢ illustrates the case where a small scatter
of test results permits the use of a narrow size range. Obviously, the necessary breadth of the size range
can be reduced by carefully controlled testing which yields low scatter.

From the coefficients of variation of the parameters of the regression line, the coefficients of variation of
the fracture parameters can be estimated. The basic equation for the spread of errors is that, if { = f(&;)
is a function of N uncorrelated random variables §;, (F = 1,2, ---, N), then the coefficient of variation




FIGURE 6.3.3
Unacceptable (a) and acceptable (b—c) scatter of the results (adapted from BaZant and Pfeiffer 1987)

verifies the relation

w% CZZ[ 5\&3 ] 12 é, (63.18)

Thus, for K. and G ¢ which, according to (6.3.6), depend respectively on A, and on A and E (which,
can be viewed as uncorrelated because they are obtained in different tests), the coefficients of variation

are simply given by
1
WKy = SWA,  wo = Vwh +wi (6.3.19)

For c things are a little bit more complicated, because C and A are not uncorrelated. It is well known
that if we write the regression line in the form Y = A(X — X) + C where X = £/ is the abscissa
of the centroid of the data points, then A and C are uncorrelated. Obviously C is the Y intercept at the
centroid, and it is very easy to show that C does indeed coincide with the ¥ coordinate of the centroid of
the data points:

Ly
C= = (6.3.20)
Furthermore, the coefficient of variation of C is given by
v
T (6.3.21)

(n— 2)(Ey)2
Now, since C = AX + C, it tums out that C/A = X + C/A so that from (6.3.6) and (6.3.18) we get

1 c\* ok e o
g | () 4+ (5) 2] Ga et wom

Example 6.3.2 Consider again BaZant and Pfeiffer’s results analyzed in example 6.3.1, and apply to
them the foregoing analysis. We first construct the sums in (6.3.12): & = 12,5, = 1.7145, L. =
0.37015, %, = 1.1335,%,, = 0.13099, £, = 0.21544, and then compute A = 1.5023 from
(6.3.14). Next the values of A and C follow from (6.3.13): A = 0.427, C = 0.0334; they coincide, as
they should, with the values obtained with the commercial program in example 6.3.1. Now, according
to the data in Table 1.1, the span-to-depth ratio was S/D = 2.5 for series Bl. Thus, from (6.3.15)
p2.5(a@) = 1.6ps(a) — 0.6poo(alpha), and using the expressions (3.1.2) and (3.1.3) for ps and po, we
get

pas(a) = 1.847 — a[—0.1424 + 0.6960(1 — o) — 0.4308(1 — a)? + 1.221(1 — &)®]  (6.3.23)

and since the relative notch depth was cig = 1/6 (see Table 1.1), the value of kq is readily obtained from
(6.3.15): ko = 0.687. To obtain k;, we use the numerical approximation kj =~ [k{1/6+0.005) —k(1/6—

e
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TABLE 6.1
Best fits of G, and ¢y for the results of BaZant and Pfeiffer (1987).
Specimen® B Kre Gy wa Wi,
Series  Material type (MPa) k°® (MPay/m) (N/m) (%) (%)
Bl concrele  SEN-TPB 59 T § 0.673 1.03 384 6.8 34
B2 concrete DEN-EC 29.0 1.30 1.14 44.5 7.0 35
B3 concrete DEN-T 25.3 0.832 0.96 359 14.8 74
Cl mortar SEN-TPB 329 0.673 0.84 21.4 4.1 2.1
c2 mortar DEN-EC 32.8 1.30 0.86 22.6 49 2.5
C3 mortar DEN-T 324 0832 0.86 22.9 10.0 5.0

2See specimen types in Fig. 1.5.1
bCalculated from ACI formula E = 4735/ f%
¢Calculated by FEM by BaZant and Pfeiffer (1987)

0.005)]/0.01 and get kg = 2.10. Next, (6.3.6) delivers K;. = ko/VA = 0.687//0.427 = 1.05
MPam!/2, ¢y = (ko/2/k{)C/A = (0.687/2/2.1) x 0.0334/0.427 = 0.0128 m, or ¢; = 12.8 mm.
To determine Gy we need E, which was not directly determined in BaZant and Pfeiffer's work. We can
approximate £ by ACI formula £ = 4734,/ f7, which, using the value f! = 34.1 MPa from Table 1.2,
delivers £ = 27.6 GPa, from which Gy ~ 39.9 N/m. For the statistics, we first compute x? from the
last of (6.3.16), which gives x* = 1.060 x 107; then, from (6.3.17) we get wa = 6.8%, we = 15.4%
and m = 14.7%, and from (6.3.21) wgz = 3.2%, with C' = 0.09446 from (6.3.21). According 10
this and Eq. (6.3.19), the coefficient of variation of K. is wg,, = 3.4%; finally, from (6.3.22) we get
we, = 22%. The coefficient of variation of G s is at least 6.8%; the coefficient of variation of £ cannot
be cbtained from the original BaZant and Pfeiffer’s data, so neither can the coefficient of variation of G .

6.3.5 Performance of the Size Effect Method

The fact that determination of &y and ¢y from size effect tests based on Egs. (6.2.3) and (6.2.2) yields
approximately the same results for specimens of very different geometries has been verified by BaZant and
Pfeiffer (1987). In their tests, three-point-bend specimens, double edge-notched tension specimens and
ecceniric compression specimens of size ratios 1:2:4:8 were tested. The essential information about these
tests is given in Chapter 1; they correspond to Series B1-B3 for concrete, and C1-C3 for mortar. The
optimal fits of the test results are shown in Fig. 1.5.3. The values of the fracture toughness and fracture
energy obtained by the regressions of the test results are given in Table 6.1. The critical effective crack
extension was not computed in BaZant and Pfeiffer’s original work.

It is remarkable that, despite the very different specimen geometries used, the coefficients of variation of
K[ values obtained for specimens of various geometries were, on average, less than 5% (which is better
than the scatter of strength test results). It may also be noted that studies of Karihaloo and Nallathambi
(199177), and Swartz and Refai (1987) further indicated that this method yields systematic results free of
size and shape effect, and that it also yields for the fracture energy similar results as Jenq and Shah's two
parameter method (see Section 5.5). o

Karihaloo and Nallathambi {1991?7) listed most of the fracture test results known at that time, in which
they compared their method (see §5.4.3) to BaZant's size effect method. For this purpose they converted
Gy to K. according to the LEFM relationship K. = /G K. For the beam tests they reported, the
K1 values were 0.847—0.892 kNm~3/2 for the size effect method and K7, & 0.867 kNm~3/2 for their
method. A similar agreement was found for the data of BaZant and Pfeiffer (1987). The size effect method
was used by Brihwiller (1988), Saouma et al. (19897?) and He et al. (1992) to measure the fracture
energy of dam concrete.

On the other hand, the fracture energy value obtained by these methods is generally quite different from
that obtained from the RILEM work of fracture method (RILEM 1985; Hillerborg 1985); see Chapter 7
for a discussion on the sources of the discrepancy.




6.3.6 Improved Regression Relations

As already pointed out, the regressions in Egs. (6.3.1), (6.3.4) and (6.3.7) are not completely equivalent
and do not yield exactly the same results because these regressions imply different weighting of the data
points. If consistent weighting is used, then the difference between the three regressions is only marginal,
as we show next. ‘

The basic idea in the following is that in the frame of the maximum likelihood theory, the classical
least square fitting in which the function x? = 3 5 (Ye — Y&)? is minimized, assumes that the (standard)
errors of the various measurements are identical (Y is the theoretical expression for Y as a function of X

and the regression parameters). However, in practice this condition g4 very well not 3¢ hold, because,

for example, the errors are proportional to the measured quantity (constant coefficient of variation), or
different load cells have been used to perform the measurements for different X, or else ¥ is not the
measured value but a nonlinear function of it, etc. In such an event, weighted least square fitting must be
performed. In such weighted regression, the function to be minimized is

= w(Y - V)2 (6.3.24)

k=1

where the weights wy must be inversely proportional to the square of the error (or variance) of the
corresponding measurement:

_— 1 1
k - = 3
% kakz

(6.3.25)

in which s is the standard deviation for the kth measurement and wy, its coefficient of variation (the last
expression is only approximate because we use the approximate value Y} instead of the unknown true
value of the variable).

The determination of sk or wy for a particular experimental setup is not a trivial matter, and is very
rarely carried out in detail. The most usual assumption is that the directly measured quantity (in our case
the nominal strength o +,) has a constant relative error, i.e., a constant coefficient of variation w, Nu-
Taking this assumption for granted, the weights for the various regressions become fixed. Indeed, using
the formula (6.3.18) for the propagation of errors we get the following relationships for the coefficients
of variation of the regression variables y = Inoyy, ¥ = 1/0%,,, and Y’ = 1/(Do%,,):

_ wah"u

wy = Yy 3 W= Wigy, y Wyt =gy, (6.3.26)

Thus, the weights to be used for the various regressions are

vk

Wy o< 1 for logarithmic nonlinear regression (6.3.27)
waNuyi
W ! I+ 1 for linear re; ion I (6.3.28)
kX ————3 X — gressio -3
zwaNu Ykz Ykz
1 1 P .
Wy o —- for linear regression [I (6.3.29)

. TN .
TN k k

The foregoing analysis shows that the equal weight assumption is only valid for the logarithmic nonlinear
regression; for the other two regressions, the weights must be inversely proportional to the square of the
dependent variable ¥ or Y’. More generally, it shows how the weights in the three regressions are
inter-related, and that given any one set of weights the other two sets are fixed.

For the reasons just explained, it is better to use either a logarithmic nonlinear regression or a weighted
linear regression to obtain G5 and cy by the size effect method. If a linear regression of type [ is used
then we introduce for these points the weights wg = 1/Y2 (k= 1,...n).

The weighted regression formulas are entirely similar to those for equal weights. The only change is

W 5 ié



. Size Effect Method: Detailed Experimental Procedures ] 15

that the sums X, ¥, etc., defined in (6.3.12) are now redefined as weighted sums as follows:

n n n
E=Zwk, Zz=Zkak, EV:ZW"Y“
k=1 ’ k=1 k=1
n n n
Yz = Zwk(xk)z , E:y = Zkaka ; Zyy = Zwk(yk)z (6.3.30)
k=1 k=1 k=1

This is the only modification: the expressions for A, A, C, C, x* and the coefficients of variation are

identical to the formulas in §6.3.4, except that the ¥'s appearing in those formulas are now given in
(6.3.30).

Example 6.3.3 Consider again BaZant and Pfeiffer’s results analyzed in example 6.3.1, and apply to
them the weighted linear regression I. We first construct the sums in (6.3.30): £ = 2620.5,Z; =
189.25, X, = 23.448, Z, = 160.75, L,y = 12, 2, = 16.097, and then compute A = 25630 from
(6.3.14). Next the values of A and C follow from (6.3.13): A = 0.459, C' = 0.0282; they are sensibly
different from the values obtained with the equal-weight regression in examples 6.3.1 and 6.3.2. Now,
using the values for kg and k{ found in example 6.3.2 we get K. = ko/v' A = 0.687/+/0.459 = 1.01
MPam!/2, cr = (ko/2/ky)C/A = (0.687/2/2.1) x 0.0282/0.459 = 0.01005 m, or ¢y = 10.0 mm.
Using for E the ACI estimate £ = 27.6 GPa, computed in example 6.3.2, we get G = K%, /E ~ 37.3
N/m. For the statistics, we first compute x2 from the last of (6.3.16), which gives x* = 7.9857 x IQ_I:
then, from (6.3.17) we get wq = 6.2% and wg = 9.6%, and from (6.3.21) ws = 2.8%, with C =
0.061343 from (6.3.21). According to this and Eq. (6.3.19), the coefficient of variation of K. is
wic;, = 3.1%; finaily, from (6.3.22) we get w,, = 14.9%.

Note how the coefficients of variation have decreased with respect to the equal-weight solution: this is
because the weighted regression minimizes the relative deviations from the theoretical curve rather than
the absolute deviations.

Example 6.3.4 It is instructive to compare the solutions for the various regressions applicable to
BaZant and Pfeiffer series B1. Without detailing the computations (which follow the steps illustrated in
the preceding examples), the results for K. and ¢y and their coefficients of variation are included in the
following table:

Regression
Parameter “Nonlinear Linear [ Linear I  Weighted [ Weighted I
K. MPam'/?) 1.00 1.05 0.98 1.01 1.01
¢f (mm) 9.8 12.8 9.00 10.0 10.0
wKie (%) 34 34 3.4 3.1 3.1
we, (%) 16 22 14 15 15

We see that the two weighted linear regressions and’the nonlinear regression deliver nearly the same
values and coefficients of variation. Indeed, it is easy to prove that the two weighted linear regressions
are in fact identical, with C' = A and A’ = C. The proof is left as an exercise.

Exercises

63 Compute ko and kg for the test series run on SEN-TPB specimens of those included in Section 1.5. Use
the size effect parameters shown in Table 1.2 to deduce the fracture properties K., Gy and ¢y for the various
materials. Sort the materials in increasing order of (a) strength, (b) toughness, (c) brittleness.

6.4 Theihxperimenta.l results of BaZant, Gettu and Kazemi for the limestone specimens described in Section 1.5

: ~.were as shown in the following table:




ed

specimen No.
Var. Units #1 #2 #3 #4 #> #6 #7 #8 #9 #10 #11 #12

e D mm 13 13 13 253 25 25 51 51 351 102 102 102

P, N 82385 78 134 140 140 238 243 243 418 405 394

(a) Determine B f{ and Dy from the linear regression I. (b) Same for weighted regression I. (¢} Same for
weighted regression II. (d) Compare with the results of the nonlinear logarithmic regression shown in Table 1.2.
(e) Calculate K'r., Gy and cy.

6.5 Prove that the weighted versions of the linear regressions [ and II are identical, withC’' = Aand A’ = C.
(Hint: write the weighted sum of squares to be minimized for regressions I and IT; then set the variables of the
second in terms of the variables of the first.)

6.6 Consider the nonlinear logarithmic regression written as y = —J In[A exp(z) + C] with y = In oy, and

z = In D. Show that this approaches the weighted linear regression I (or ) if Yx — AX — C < Y. (Hint:
write the weighted sum of squares to be minimized for the nonlinear regression; then set the variable (y, z) in
terms of (¥, X) and write that In(1l +€) = e fore < 1.)

6.4 R-Curve Determination Based on Size Effect

As discussed in the previous chapter, the R—curves, which serve as a basis of the equivalent linear elastic
fracture analysis, can be determined in various ways which give similar results but are not completely
equivalent (§5.6.5). The most recent method is the determination from the size effect data on the maximum
loads of geometrically similar specimens of different sizes. -

The advantage of the size effect method is that, by definition, the R—curve obtained is size independent,
yet it seems to have a very broad applicability, and to be particularly goed for prediction of the maximum
loads because it is determined on the basis of the maximum loads. All R—curves strongly depend on the
structural geometry, although the same R—curve can be used as an approximation for different but very
close geometries.

There is a more profound advantage of the size effect method. If the R—curves are determined from
data on the load deflection or other similar curves, such data are very sensitive to specimen geometry and
size, thus, there is no way to go from one geometry to another except by repeating measurements. The
size effect law, on the other hand, has not only, by definition, size-independent parameters, but has also
the same shape for very different geometries. This fact has been extensively proven by experiments as
well as numerical calculations (within the size range of 1:20, which suffices for most practical purposes).
Thus, using the size effect law, one can get at least the shapes of the R—curves for all geomerries, in fact
without any further testing. Only those parameters of the size effect law which are translated into the
parameters of the R—curve need to be calibrated for different geometries. Let us now get the equations
for the R—curve from the size effect curve.

6.4.1 Determination of R—curve from Size Effect

Consider that the maximum load P, has been measured for a set of geometrically similar specimens of
different size D. For each size, and each effective crack length a, the energy release ratio at peak load G,
can be calculated from Irwin’s relationship K%/ E’ as

Gu(@) = 0% DK () (6.4.1)

where @ = a/ D and k(«) is the shape factor for K, same for all sizes D. On each curve G,,(a), there
is normally one and only one point that represents the failure point (critical state). At that point, the G(a)
curve must be tangent to the R—curve (see §5.6.3). Consequently, the R-curve must be the envelope
of the family of all the fracture equilibrium curves G(a) for different sizes, as shown in Fig. 6.4.1 (see
example in the following for details).
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FIGURE 6.4.1
R—curve as the envelope of the energy release ratio curves at peak for various sizes.

To describe the envelope mathematically, let us assume that the size effect law is known. This means
that the ultimate nominal stress o ., is a known function of D, thus

TNu = 0Ny (D) (6.4.2)

At peak load we of course have the condition of equilibrium fracture propagation ¢ = R, which, with
the aid of (6.4.1) and (6.4.2) can be written as

Gu(Aa, D) = R(Aa) with G,(Ag, D)= %Uﬁ,—u(D) kz(ao + %) (6.4.3)
Now, this equation holds for every D so that differentiting with respect to D we get
8G.(Aa, D) _
—ap = 0 (6.4.4)

where the second member vanishes because, by hypothesis, the resistance curve depends only on Aa, not
on D. Also, remark that arg must be taken as a constant upon differentiation because, by hypothesis, we
are considering geometrically similar bodies.

Mathematically, the set of two equations (6.4.3) and (6.4.4) define the parametric equations of the
envelope of the family of curves Gy(Aa, D). Elimination of D from the two sets of equations delivers
R(Aa).

Thus, it has been proven that the knowledge of the size effect law for a given geomelry permits the
determination of a unicue R~curve (for that geometry). We now apply this property to BaZant's size effect
law, first in an example, then in general form.

Example 6.4.1 Consider a double cantilever beam ;p;chnen as sketched in Fig. 6.4.1. Note tha
ag = 10D so that ag = 10 and all the specimens are geomerrically similar. The expression for G found
for this specimen in Chapter 2 —Eq. (2.1.28)— can be rewritten as

G = 120%,D(a/D)*/E’ (6.4.5)

where Dreplaced hin theorigmal equation and we defined the nominal stressaso y = P/bD. Comparing
this 10 (6.4.1), we see that k*(a) = 1202, If we further assume that BaZant’s size effect law holds, so
that oy, = Bf{(1+ D/Dp)~/2, the energy release curve at peak load is given by:

(Bf*Do _D/Dy ., (2)
D

(6.4.6
& 1+D/D, (544)

gu(a') =




We now substitute B f; in terms of G using (6.2.3), and Dy in terms of c; using (6.2.2), for which we
compute 2kg/ko = 2/ap = 1/5. The final expression for G, (a) thus becomes

_ 5D/cy a \* 5D/cy Aa\?
Gule) = Gy 14+5D/¢y (IOD) =0 14+5D/cy '+ 1op (6:47)

in which we set a = ag + Aa and ag = 10D. Fig. 6.4.1 shows various G, (a) curves for a number
of sizes D plotted in a G/Gy vs Aa/cy plot. It is obvious that these curves define an envelope: the
R—curve. To obtain the equation of the R—curve we set the partial derivative of (6.4.8) with respect to D
equal to zero and solve for D. The result is

D=25_29
C

—— (0<ha<cy) (6.4.8)

where the limitations in parenthesis simply state that neither Aa or D can be negative. Substitution of
the foregoing equation into the expression (6.4.7) for G,, gives the equation for the R-curve:

A A
R(Ac) =Gy 222 (1 - —°) 0 < Aa<cy) (6.4.9)
cr 2¢y

Which is the arc of parabola O AM showing in Fig. 6.4.1. The R—curve is completed by a horizontal line
R(Aa) = G for Aa > c; a segment of which has been also drawn in the figure.

6.4.2 R-Curve Determination Based on Bazant’s Size Effect Law

The previous example deals with a very simple case in which the analytic determination of the R—curve
is feasible. This is not generally the case, because of the complexity of the expressions for k{«) and its
derivative. In the initial work of BaZant, Kim and Pfeiffer (1986), the R~curve was computed numerically.
The numerical values of 7 so obtained were then fitted with an analytical expression. It was found that
the expression R(Aa) = Gy[l — (1 — kAa)"] for Aa < 1/k and R(c) = Gy for Aa > 1/k, with
optimized constants . and k, gave very good results. Subsequently, however, an analytical determination

i _‘_p_t; the R—curve from the size effect law has been discovered (BaZant and Kazemi, 1990a). The methed,

T B

which bbeains the R—curve in explicit parametric form, is as follows.

According to BaZant’s size effect law and the relation (6.2.3) between Gy and B f/, Eq. (6.4.2) can be
explicitly written as

G:E
k3(Do + D)
Substitution in the second of (6.4.3) gives the expression for G, (Aa, D)

o%u(D) = (6.4.10)

D A "
Gu(Aa,D) = Gfm kz(ao + —5) S 1y - (6.4.11)

[

Before proceeding any further, it is convenient to define the parameter o’ such that
Aa=(a’ = &)D (6.4.12)

The meaning of o’ in this context s the value of @ = a/ D for which a specimen of size D reaches the peak
load; thus, the straight solution of the problem would require solving for o’ from the peak load condition
to get the failure point for a given size. However, since we in general cannot solve for o', we circumvent
the problem by writing every equation in terms of & itself, i.e., using a parametric representation of all
the equations in the problem.

The first equation to write is the tangency condition (6.4.4); thus, we differentiate (6.4.11) with respect
to D, substitute Aa from (6.4.12) and solve for D; the result is

Dok(a')

b=apr -

Dy (6.4.13)
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which explicitly gives the size of the specimen that reaches the peak when a = o' We substitute this
value back into (6.4.12) and get Aa as a function of o’

IR IRICY) ;

Aa = I:W - (Q: - a{))] Dy (6.4.14)
from which, inserting Dy from expression (6.2.2), Do = 2kyey [ ko, we get the final expression for Aa
Aa n_ [ k() , 2k

c—f = fl(a ) = [‘2“:’—(&’—)- - (Ct - ao) Tc;' (6415)

This equation gives the abscissa of the R—curve as a function of parameter o’. To get the ordinate, we solve
for R by setting —in accordance with (6.4.3)— R = G,, with G,, given by (6.4.11); after substituting
D by its expression (6.4.13) and rearranging, the following expression for R is obtained:
R N CLACI P

— = () = n fl. c 6.4.16

g; =) = 2 ) (6.4.16)
where fi(a') is the function defined in (6.4.15). Egs. (6.4.15) and (6.4.16) define the R—curve in explicit
parametric form with parameter o’ (BaZant and Kazemi, 1990a).

We note that the right hand sides of these equations depend only on geometrical properties (k(a') and

its derivative); the only relevant material properties are (s and ¢ and they enter the equations by scaling,
respectively, R and Aa. In fact, elimination of o from the foregoing equations leads to an R—curve of

the type

R Aa

N = 6.4.17

Gy f( cf ) @417
where function f(-) is completely defined by the shape of the specimen (including the initial relative
notch depth).

In general, eliminating o is not feasible analytically so that it is better to use the parametric form
directly. To draw the R curve (scaled by G f) we select a set of o’ values. For each of them we evaluate
fi(a') from Eq. (6.4.15) and then calculate f(o’) from Eq. (6.4.16). To obtain the R—curve for a
particular material, the size effect method explained in the previous section is used to determine G f
and cy and then the R-curve points (Aa, R) for the various o’ follow by setting Aa = crfi(e’) and
R = Gy fa(a’). Let us illustrate this by an example

Example 6,42 Consider the three-point bend specimens used by BaZant and Pfeiffer (1987) defined as
series Bl and C1 in Table 1.1 and Fig. 1.5.1, and let us determine the R—curve. We use a graphics program
to work out the curve. We first generate an array with various values of o, starting with o’ = ag = 1/6;
a selection of the evaluation points is shown in the fist row of the table below (in reality we use points
spaced §a’ = 0.0035, but there is no point in giving all the values here; the calculations for the 10 values
shown can be obtained with a hand-held programmable calculator within reasonable time). The first step
is to program function k() using the expressions (6.3.15) and (6.3.16). The function is run for the set
of values o’ and they are stored in a second array (the second row of the table). The third row contains the
values of k’(a’) which are obtained by calculating k'(a!) ~ [k(e + 0.005) — k(e — 0.005)]/0.01.
Then, it is an easy matter to compute Aa/cy = fi(’) from (6.4.15) —fourth row of the table— and
R/Gr = fr(a’) from (6.4.16) —fifth row of the table.

o 16 0.2 022 024 026 028 030 032 034 033
k(c/) 0.687 0.756 0.798 0.842 0.887 0933 0982 103 1.09 1.12
k(o) 210 210 214 220 229 239 252 267 285 295
Aa/cy 100 0.897 0815 0720 0.614 0498 0.375 0244 0.109 0.039
R/Gy 100 0989 0.967 0927 0.865 0.774 0.645 0470 0.235 0.090

The dimensionless R—urve can be plotted by taking the fourth row as z-values and the fifth row as
y-values. Such a plot is shown in Fig. 6.4.2 (the symbols indicate the points included in the table. The
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FIGURE 6.4.2
R—curve obtained from size effect for the three point bend notched beams tested by BaZant and Pfeiffer
(1987). See Tables 1.1 and 1.2, and Fig. 1.52 for details.

curve so obtained has parabolic form (as for the case in example 6.4.1) and is continued for Aa/cf > 1
with a plateau R = G/y.

As is obvious from the foregoing examples, the R—curve obtained from the size effect law starts from
zero, which means that the process zone forms right at the beginning of loading and that there is never any
singularity at the mathematically sharp crack tip. (This type of R—curve is obtained by calculations from
cohesive crack models with no nonlinearity in the surrounding material, or from crack bridging models
that have no other toughening mechanism; Horii, Shi and Gong 1989; Elices and Planas 1992, 1993;
Planas, Elices and Ruiz 1993). Some models for composite materials consider the R—curve to start from
some initial non-zero value, interpreted as a certain small-scale value of the fracture energy. However,
this kind of R—curve implies that the crack tip would be able to sustain, up to some value of the stress
intensity factor, a singular stress field without showing any damage, which does not seem reasonable.

The R—curve obtained in this manner, as well as the load-deflection diagrams calculated from such
R—curves, have been found to be in good agreement with numerous data on concrete and rocks, (BaZant
and Kazemi, 1990a; BaZant, Gettu and Kazemi, 1991) as well as aluminum alloys (BaZant, Lee and
Pfeiffer, 1987).

Determination of the R—curve from size effect data does not work in all circumstances. [t obviously
fails when &'(cp) = 0, and does not work when k'(cg) < 0, because k'(cg) > 0 (Dg > 0) was
implied in the derivation of Eq. (6.4.16). It also fails when k' () is too small, because of the scatter of
test results. So this method must be limited to the positive specimen geometries, for which &’(ag) > 0.
This nevertheless comprises most practical situations. . .

6.4.3 Determination of the Structural Response from the R—~Curve

The determination of the load—displacement or load—CMOD curves for a particular specimen size once
the R—curve has been determined as just explained is very easy. The first step is to determine the load
corresponding to a point of the R—curve. Lets then assume that we have obtained a point (Aa, R) as
illustrated in the previous paragraph. The load corresponding to it for a static crack growth for a specimen
of size [J is obtained by setting G = R or

R = %aﬁ,Dkz(ao + Aa/D) (6.4.18)
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T2 is kept constant after peak load (a). Process zone at different stages: (b) before peak load; (c) at peak
load; (d) after peak load. (Adapted from BaZant and Kazemi, 1990.)

which can be immediately solved for the load o :

VE'TR

aoN = 6.4.19
V= UDk(ao + Aa/ D) S

Now, the expression for the displacement u follows from (3.5.6) as
u= %}'Dv(ao + Aa/D) (6.4.20)

where v(ar) can either be found in closed form in a handbook, or computed using (3.5.7), as derived in
§3.5.1. Similar expressions can be used for the CMOD (see §3.5.3). S

w%qf; I’qb‘u 78S e AR B i
6.4.4 ];&ff@odiﬁcation of the Post-Peak Region of R—curves : - o

 When the R—curve given by Egs. (6.4.14) and (6.4.16) is used in the calculation of the load—deflection
" curve, it must give, of course, maximum loads that exactly agree with the size effect law. This has
»/been checked numerically. It has been also checked that such calculations give the correct shapes of
~/ the load—deflection diagrams up to the peak point (BaZant and Kazemi, 1990a,b). However, significant

deviations from the observed load—deflection curves have been encountered in the post—peak regions for
"> An-explanation was sought-and.it-was concluded-that the. foregoing. calculation from e size effect
. lawYielddonly a master R—curve whose entire length is followed only for a infinitely large specimen. In
" actual specimens, the master R—curve # followed only up to the maximum load point, after which one
must assume, in order to get correct predictions of the post-peak deflection, that the value of R remains
:constant and equal to the value it reached at the peak load, i.e., the R—curve after the peak load is a

++ ' horizontal line as depicted in Fig. 6.4.3a ( BaZant, Gettu and Kazemi,1991; Bazant and Kazemi, 1990b).
ssal] The reason for this behavior has not been firmly established, but apparently iconsistg’ In the fact that in

_ | the post—peak regime the fracture process zone, due to decreasing load, canndt keep growing; instead, it
el ;" detaches itself from the tip of the notch or initial crack and travels forward vfi[hq_ut growing in size (see

’ Fig. 6.4.3b-d). H rrrrarea ;e e denel “y SRR b
/ . r 3 —
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6.4.5 Experimental Verification

According to the foregoing, the R—curve can be determined solely from the maximum load data on similar
specimens of different sizes; for this curve to be useful, it has to be able to predict correctly the structural
response, Le., the load—deflection or load-CMOD curves. Whether this method gives realistic results has
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FIGURE 6.4.4

Size effect analysis of fracture tests on limestone: (a) Predicted and measured structural response for
limestone specimens (After BaZant, Gettu and Kazemi 1991). (b) Predicted and measured structural
response for high strength concrete specimens (After Gettu, Bazant and Karr 1990).

been investigated experimentally by BaZant, Gettu and Kazemi (1991) on limestone, and by Gettu, BaZant
and Karr (1990) on high strength concrete. Three-point-bend specimens of different sizes were tested.
The geometry of the specimens and the main properties of the materials are described in Tables 1.1 and
1.2 and in Fig 1.5.1 (series F1 and D1).

By regression of the maximum load data (Fig. 6.4.4a) the size effect law was calibraled, and then the R-
curve was deduced according to method described. This R—curve was then used to calculate the diagram
of the applied load vs. the load-line displacement. The predicted and measured load-deflection curves are
shown in Fig. 6.4.4a for the limestone specimens and in Fig. 6.4.4b for the high strength concrete. Solid
lines show the predicted curves, and the symbols represent the measured response.

In obtaining this deflection prediction, it was assumed that the master R—curve is followed only up to
the peak load, and after that the R-value remains constant. Without this, the post peak deflection could
not be predicted weil. Moreover, the value of the elastic modulus used in the determination of the load
deflection curve —Egs. (6.4.19) and (6.4.20)— was not independently measured, but was adjusted to get
a good fit of the initial slope. Thus, further analysis and tests are required for the model to be completely
validated. o e
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Exercises

. 6.7 _/Prove that for a double cantilever beam, the R-curve deduced from BaZant’s size effect law is independent
‘of the initial crack length.

6.8 Prove that for a crack of length 2a0 in an infinite panel subjected to uniform remote tensile stress, the
envelope of the G (Aa) curves degenerates into a point of coordinates (cy, G). Conclude that the R—curve
can be considered to be defined by the segments of the limiting G, (a) curves for D = 0 and D = co which
define the bilinear R~curve R = GyAa/cs for 0 < Aa < ¢r and R = Gy for Aa > ¢.

6.9 Find the R—curve based on BaZant's size effect (given G and ¢;) for a double cantilever beam whose
arms are subjected to a uniformly distributed load p per unit length. Take on = p/b, b = thickness, D = arm
depth, ag = apD.

6.10  Determine the load—displacement curve of the double cantilever beam analyzed in example 6.4.1 for
thecase D = ¢y /4.

6.11 Determine the load—displacement curve of the double cantilever beam analyzed in example 6.4.1 for
the case D = ¢y.

6.12 Determine the load—displacement curve of the double cantilever beam analyzed in example 6.4.1 for
the case D = de¢y.

613 Show that the load—displacement curve expressed as a ox—u when the behavior is governed by an
R—curve deduced from BaZant's size effect takes always the form

S u ¢y [E'Gy o
aN =O’ltp(;1',-b~), o= py 1 u1=cf—E—;- (6421)

where q:@ is a non dimensional functon, that depends implicitly on the shape only.
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